

EE573 project report

OO analysis/design of CABAC, and
UML modeling of H.264 encoder

Hassan Shojania
shojania@ieee.org

December 17, 2004

 1

1. Introduction
H.264 background/history:

H.264, also known as Advanced Video Coding (AVC), is the newest video
coding standard developed jointly by VCEG (Video Coding Experts Group) of ITU
(International Telecommunication Union) and MPEG (Moving Pictures Experts
Group) of ISO (International Standard Organization) under JVT (Joint Video
Team) name and released in 2003. This standard has also been released under
part 10 of MPEG-4 to complement MPEG-4 Visual (part 2 of MPEG-4) which was
released in 2000. MPEG-4 standard is an ambitious standard which goes beyond
delivering traditional sequences of 2D video & audio and constructs a scene as
hierarchy of elements from video, audio, text, synthetic objects, … where every
element is treated as an object. Not only this provides better flexibility in choice
of compression techniques, it makes features like interactive media, animation,
personalized enhancements to a video program, … possible. Though both MPEG-
4 Visual (part 2 of MPEG-4) and H.264/AVC are concerned with compression of
visual data, H.264/AVC is focused on high efficiency while MPEG-4 Visual on
flexibility. One of the reasons that MPEG-4 hasn’t become as much success as
MPEG-2 (established in 1994) is its limited improvement of compression
efficiency for broadcast applications. H.264/AVC was meant to address this
deficiency.

These standards are not written as development guides but with the goal of
ensuring compatibility and interoperability between different implementations.
For example an AVC/H.264 compliant bitstream generated by one encoder must
be decodable by another manufacturer’s decoder (i.e. high coupling). The
standard describes the decoding process and the bitstream format in details
while encoding process is not specified at all in order to allow designers to
choose their own method of encoding. These are complex documents; e.g.
MPEG-4 Visual consists of 539 pages and H.264/AVC is over 250 pages. Since the
standards are difficult to interpret, reference software is also developed by the
standard bodies (though not optimized, and meant as a proof of concept) to
facilitate implementation of the standard by different people/companies and
ensure same understanding of standard specification.

H.264/AVC is employing many new techniques to achieve higher compression
ratio. One is a new entropy coding technique called CABAC (Context Adaptive
Binary Arithmetic Coding) performing the last stage of encoding (virtually) before
bitstream generation. Because of high utilization of this stage (an average of 50
million bits per second with a possible maximum instantaneous rate of 800
million bits per second), CABAC is an important part of H.264/AVC in any
hardware/software implementations.

Our focus in this project is on H.264/AVC reference software. It’s a huge
software (over 65,000 lines of code) written in C, without any documentation

 2

and very minimal in-line comments. It is updated regularly since release of the
standard to cover more parts of the standard and also fix existing bugs. The
software consists of an encoder (to generate a conforming bitstream according
to the standard) and a matching decoder (conforming to the decoding process
described in the standard); it is capable of encoding an input video sequence (in
YUV 4:2:0 color format) and decoding the encoded sequence back to the original
sequence.

Why this project?

The author’s thesis is about implementation of a high-speed hardware of
CABAC with proper programming model and software interface to the rest of
H.264 codec. Since start of this thesis, there have been many struggles with the
reference software. Though the code is modularized by grouping related
functions in separate files and grouping related data in data structures, it still
very much lacks the characteristics and clarity of a good OO design. As there is
no information hiding and use of global variables is common, side-effects of
function calls are not known. Though the focus has been mainly on CABAC,
changes made to CABAC portion (e.g. inserting a HW-model code in place of
original code) resulted in many issues (e.g. because of different sequence of
usage, synchronization, …) solely because of not knowing the details of other
portion of the software. There had been many hours spent on debugging huge
scary code to resolve simplest issues. Even after passing this long learning curve,
it was realized that the hardly gained knowledge was dissipating with a high
rate! Even only a week or two was enough to forget many details because what
learned previously was not documented. On the other hand, a few attempts for
gradual textual documentation of whatever learned failed as priority was to solve
the main issues not documenting code that wasn’t directly related to the goal.
What was really needed was a long commitment to solely spend on modeling
and documentation of the rest of codec. Of course it wasn’t justifiable much to
take a minimum 3 weeks off from the thesis and spend on this (though in a long
run would worth it). This course project was a great opportunity to justify this
time and commitment!

In this project, we intend to analyze CABAC, model and design an OO CABAC
using UML. We also intend to provide a high level UML model of H.264/AVC
encoder (though not complete). As the reference software is not object oriented
and without any documentation, we believe this effort can help with better
understanding of the code and eventually the standard itself for future
references by the author and other students. At the same time, it serves as a
good exercise of what we have learned so far about OO analysis and design
along UML concepts.

 3

2. Video compression background
Here we briefly go through some terms and basics ideas in video compression

to allow better understanding of the later topics. This section can be skipped at
this point and only referred to when needed.

Codec: It is an acronym for encoder/decoder pair.

Asymmetric coding: As usually a video content is compressed once but
decompressed (played back) several times by a larger group of people, the
decompression process should be as light as possible. Popular video compression
algorithms (MPEG 1/2/4), all require way more computation power on the
encoding side compared to the decoding side (in order of tens of times).
Naturally some degree of HW acceleration for encoding process always needed.

Video compression:
Video compression is achieved through different sources. Below describes some

of the main ways to achieve compression:
Intra-transformation: Within a frame, there exists spatial redundancy in

color of pixels in any neighborhood (depending on the region of frame). This
correlation is exploited to achieve compression by some mathematical
transformations (e.g. Discrete Cosine Transform). A block of pixels is
transformed to an equivalent presentation of the same block but with generating
high deviation between value of colors at different location of the block mainly
generating high values at upper-left corner of the block and many zero or close
to zero values at bottom-right area. By dropping less-significant values, the
amount of data is reduced but without much decrease of quality. A similar but
inverse process called inverse transformation reconstructs the block at the
decompression time.

Inter-prediction: There is lots of temporal redundancy between successive
frames of a content as fast movement of camera or objects within frame doesn’t
happen very often (considering usual 30 frames per second video sequence). By
detecting movement of blocks of pixels from one frame to another, instead of
transmitting the whole block just a motion vector representing the motion is sent
(of course this is a simplified version of the process as more complexity is
involved).

Entropy-coding: This stage is almost (except NAL stage) before generation of
the final bitstream. This coding technique exploits redundancy between codes
generated by higher level encoders. By assigning a shorter code to a more
frequent element and longer to less frequent one, the average length of
generated stream is reduced. By trying to capture statistical characteristics of
elements and adapting this code assignment, better compression ratio can be
achieved (context adaptive).

Below figure shows major units of H.264 encoder and data flow between them.
Fn is the n-th frame, F’n-1 is the reconstructed reference frame used for motion
estimation, and F’n is the reconstruction of current n-th frame. ME (Motion
Estimation) and MC (Motion Compensation) relates to inter-prediction already

 4

described. T and T-1 are the forward and inverse transformations. Q and Q-1 are
quantization and de-quantization blocks.

Depending on the type of slice current frame (Fn) is encoded based on it
(I/B/P/SI/SP), either inter or intra prediction is selected. The prediction
macro/subblock is subtracted from the original macro/subblock to form the
residual. This residual (which has much smaller dynamic range) is transformed
and quantized. The resulted coefficients are reordered and entropy coded and
finally packed for network transmission. Same macro/subblock is also
reconstructed, so its reconstructed value is used for neighboring blocks (intra) or
as reference for intra prediction.

Figure 1. H.264 encoder building blocks along data-flow between them

CABAC versus CAVLC:

H.264 targets different applications with different requirements so it supports
different profiles: Baseline profile targets videotelephony, videoconferencing and
wireless applications. Main profile targets television broadcasting and video
storage. Extended profile targets streaming media applications.

Naturally the main profile requires the highest resolution, quality and
bandwidth so needs maximum compression possible. This profile employs CABAC
(beside other features) at entropy coding level which beats other profiles’ CAVLC
coder (similar to traditional entropy coders used in earlier standards) by 9-14%.
This coder is way more computationally expensive than CAVLC especially at the
high resolution/bitrate main profile is targeted for. Its level 2.1 requires coding of
50 million bits per second which could go up to instantaneous bitrate of 800

Fn
(current)

F’n-1
(reference)

ME

MC

T

Intra
prediction

Filter

Q Entropy
encoder

Reorder

Prediction

Inter

Intra

+

-

+
+ T-1 Q-1

Dn

uF’n

To NAL

Residual
Motion vectors

D’n

Reconstructed
Residual

F’n
(reconstructed)

 5

millions per second. Since CABAC employs binary arithmetic coding at its heart
(which gives its higher compression ratio), its coding is highly serial and can not
be parallelized. That is why a hardware implementation of whole or partial
hardware acceleration is required for it.

3. Analysis of H.264 codec
The requirements for a CABAC decoder is specified in section 9.3 of H.264

Standard Specifications [ITU`03]. This is similar to the rest of the standard
where only decoding process of a compliant stream is described and encoding
process needs to be inferred from the decoding process. For CABAC, some
flowcharts of encoding stages are given in the standard only as recommendation
though. In short, a CABAC encoder needs to generate a compliant bitstream that
can be decoded using the CABAC decoder described in section 9.3 (along all the
tables and flowchart of decoding process). For the reference software, the
standard specification becomes the major SRS (Software Requirement and
Specification) too as the whole standard is implemented in software (i.e. no
hardware acceleration). Since the reference SW is a proof of concept only, it
doesn’t intend to be fast, efficient or target a particular range of applications like
a commercial product. It supports all items of the standard but some cases might
take very long to execute (depending on the speed of system). It also doesn’t
have any UI, video source is a file, similarly a file as output of codec. No
particular platform is targeted, so no platform dependent features are used; only
plain C functions.

Fortunately the existence of the reference software beside the standard was
very helpful to understand the underlying specification and algorithms. The
author was using the reference software as whole and particularly the CABAC-
related portion for roughly a month before start of this project. The CABAC
portion was suffering from similar issue as rest of the software described in the
introduction portion of this report, mainly all drawbacks of a large software
written in a procedural language which also lacks documentation. Understanding
the behavior, data flow and call graph of different modules required tens of
hours of debugging while referring to standard and books. When change of some
portion of CABAC code started (to plug in some experimental hardware model
and test the validity of the model), whole new issues started to show up as some
call sequences were changed and side-effects of changes were unknown (e.g.
because of lack of information hiding). At points, breakpoints on data access to a
memory location was used to figure out where/when a member of a data
structure was changing as there was no clue how its value was changing from
one portion of code to another (also single stepping a code that running it as a
whole was taking more than 3 hours was not an option). All these issues were
suggesting of the usefulness of a model for whole reference software.

As an OO design and implementation of the whole reference software is within
scope of a thesis itself, this project was limited to OO design of CABAC in

 6

particular along UML model of more important portions of current reference
software but with an OO emphasize.

Now to better represent where (what layer) CABAC sits in the reference codec,
we go through some high level use cases of a media application down to the
CABAC. Note that these use cases are not CABAC use cases and just shown to
better illustrate the concept of video coding and familiarize the reader with the
field.

Use-case 1: Media application use-case
Below use case diagram shows some of the features of a media application and

how a user will interact with it. Of course this doesn’t cover all features and use
cases of nowadays modern media application but it shows interaction with some
other actors in fulfilling its functionalities.

The diagram itself is self-explaining enough so we don’t repeat it as a use case
specification as it’s not our main focus here.

Figure 2. Media application use-case

 7

Use-case 2: Media application encoding/decoding use-case
This use case diagram focuses on encoding and decoding processes within a

media application and its interaction with other actors. Again, here we refrain
from presenting a formal use-case spec.

In the encoding process, first there is a source of video content
(uncompressed) intended to be transformed to a compressed form. Note that
encoding is different than recording (though might involve recording too) in the
sense that it is not just capture of video but requires further processing (i.e.
compression) too. Any compression involves tradeoff between quality (resolution,
picture quality, jerkiness,…), encoding speed and storage/bandwidth size
(depending if the output is stored or broadcasted). This requires adjustment of a
set of “encoding parameters” which can be done either by the user in an
interactive fashion (e.g. through a multi-step wizard), automatically by media
application or through some predefined set of configurations. Of course, factors
like a live content, availability of hardware support, efficiency of codec, … would
limit the range of possible choices.

Figure 3. High-level encoding/decoding use-case

“Encode of a video content” involves other actors too. Here video codec is

shown as an actor in a sense that nowadays a video codec as a whole is often a
separate component deployed separately on a system than the media
applications and if properly registered, it can support different media applications
(e.g. RealPlayer, QuickTime, WindowsMedia, …). It supports interfaces for
encoding and decoding but because of performance issue, it will be mainly
implemented as an in-process library loaded by the media application. “Hardware
accelerator” is shown as a potential actor here to emphasize the role hardware
might play in encoding/decoding. Usually most of the hardware access is
abstracted by the video codec itself rather than media application, but there

 8

might be still some query of capabilities and degree of hardware support done by
the media application. Media application receives the compressed content from
the codec (gradually) and could use it in different scenarios (e.g. broadcasting,
storage, streaming, …).

Similarly, decoding of a video content uses the decoding interface of the codec
to decompress the compressed source and provide the media application with
the uncompressed source. Then the media application will decide how to use this
decompressed content (e.g. displaying, storage, …) based on higher level use-
case of application at that point.

Use-case 3: Media application encoding use-case (I/O view)
This use case diagram focuses mainly on I/O and interaction with other players

during encoding process. Source of uncompressed data is either disk or live
content. Reading/capturing this source is on going process and chunk of this
content (e.g. in frame units) is passed to the encoding block which itself take
advantage of codec and HW accelerator. At the last stage, the compressed data
is prepared (e.g. packetized) for proper medium for streaming or storage.

Figure 4. Encoding path input/output view

Use-case 4: H.264 encoder use-case
This is a use case diagram depicting similar block diagram of Fig. 1. Comparing it

against that block diagram is interesting; instead of focusing on data-flow of that
figure, it shows equivalent functionalities. Virtually every operation in the
reconstruction path (except the de-blocking filter) is the inverse of an operation in

 9

the forward path. The encoder reconstructs every frame of the encoded video
(similar to what the decoder does at playback time). This is done so intra prediction
of neighboring macroblocks or inter-prediction of macroblocks in other frames will
use the same data the decoder sees not the original data that’s visible to encoder
only (because of lossy nature of encoding).

Figure 5. H.264 encoder use-case

Use-case 5: Slice generator use-case
Each frame is encoded as one or more slices, a sort of highest level of encoding

unit. Each slice is composed of many syntax elements (e.g. transform coefficient
residuals, motion vector differences, macroblock type/subtype, header info, …). This
syntax elements are generated after all higher level coding is done and they’re ready
to be entropy-coded. This higher level coding is done through either inter or intra
prediction. Inter-prediction involves motion estimation which means comparing
macroblocks of one slice against another’s to find the closest match. This process
requires lots of code which is more of low-level mathematical nature (also normally
the main bottleneck of every encoder), thus would make sense to put it into a
separate package. Macroblock is the biggest unit of prediction (for both intra/inter)

 10

and involves a good portion of reference SW so would make sense to have it as a
separate package. Also, rate-distortion is higher level decision making that chooses
the best prediction (the one resulting in lowest bitrate considering trade-off between
speed of decision making and quality/bitrate of compressed content), so it make
sense to separate it into another package.

Either or both CAVLC and CABAC support is needed in a H.264 encoder depending
on the profiles that particular encoder supports (baseline and extended profile
require CAVLC, main profile requires CABAC). Though they’re normally implemented
as an integral part of main encoder (and not deployed as a separate component),
we consider them as components here to emphasize the importance of a good
interface between them and the rest of encoder. Otherwise they could have been
packages instead.

After entropy coding, the resulted data called VCL (Video Coding Layer) data is
mapped to NAL (Network Abstraction Layer) units prior to transmission or storage.
The purpose of this layer is to distinguish between coding related features at VCL
and transport related features at NAL.

Of course there is another higher level code that employs slice generator many
times during the encoding process but that layer is pretty much thin and involves
I/O (e.g. file read/write) and administration work (e.g. reading encoding
configuration parameters).

Figure 6. Slice generator’s use-case

CABAC
CABAC stands for Context Adaptive Binary Arithmetic Coding and consists of

few sections itself:

 11

1) Binarizer is a form of pre-processing stage (before coding) that operates
on syntax elements and generates a unique intermediate binary codeword for a
given syntax element. This intermediary codeword is called bin string and each
binary value of it called a bin. This stage effectively reduces the alphabet size of
the syntax element and allows more efficient operation of context modeling
stage.

There are four main binarization scheme employed in this stage: unary (U)
binarizer, truncated unary (TU) binarizer, k-th order exp-Golomb (EGk) binarizer
and fixed-length (FL) binarizer. Each one of them applies a different
mathematical transformation to the syntax element. Also, two combinations of
these binarization schemes are used for some syntax elements: FL+TU, TU+EGk
(also called UEGk).

2) Context modeler is the heart of context-adaptive capability of CABAC that
differentiate it from other entropy coding techniques. It assigns a model
probability distribution to given symbols which are used for generating the code
at the subsequent coding stage. This model determines the code itself and
controls the efficiency of the coding. It is kept up-to-date at all times meaning its
statistics is updated after coding of every new bit. It consists of a table of 399
entries which each consists of a 6-bit probability value and a 1-bit MPS (Most
Probable Symbol). The table is accessed and updated by binary arithmetic coding
stage; it is initialized with some predefined values (3 variations of initial table
exist that depending on encoding parameters one is selected for an encoding
scenario) at the beginning of each slice.

3) Binary arithmetic coder is another differentiating feature of CABAC. It is
based on recursive interval subdivision. The interval and its location are tracked
at any time by two integer values. Based on the statistical property of the symbol
being coded, the interval is divided to two regions proportional to probability of
LPS and MPS. Update of this interval produces 0 or more output bits to be
appended to the output stream. A context-model entry (associated with the
symbol) provides the statistics of the symbol being coded. The 6-bit of context
entry is the probability estimate of the Least Probable Symbol (LPS) while the 1-
bit of the entry shows the polarity of MPS.

Since the sub-interval size is reduced after each coding, a renormaliztion
operation rescales the interval range and location to proper range. Actually this
renormaliztion process generates the output bit as part of its rescaling process.

4) Bypass coding is a simplified form of arithmetic coding applied to symbols
that more or less show a uniform distribution so statistics doesn’t help to
improve their coding efficiency. As the result, their coding doesn’t need to
reference or update the context modeler table. This method also uses the same
interval subdivision and renormalization scheme.

Now the use-case specification for CABAC as a whole can be described as

below:

 12

Name: UC1) High-level use-case of CABAC
Description: CABAC receives a syntax element from the higher level code of H. 264
encoder (namely Slice Generator) and entropy encodes it.

Precondition(s): A valid syntax element (MB, sub-MB, header element, type, …) is
passed to CABAC.

Postconditions(s): CABAC state is updated based on its previous state and the new
syntax element. Some output bits might be generated.

 Basic Course of Action:

1. CABAC receives a syntax element from a variety of possible syntax element
sources within slice generator

2. It binarizes the syntax element through one or combination of unary, truncated
unary, k-order exp-Golomb and fixed-length methods into bins.

3. It fetches a proper context entry from the context modeler for each bin based on
history, bin index, …

4. Using the statistical info of the context entry, it encodes the bin using binary
arithmetic coder.

5. It updates the context entry based on the bin encoded.
6. It updates the arithmetic coder state.
7. It generates 0 to potentially several bits to be written to output stream.

 Alternative course A: Bypass coding mode is used for syntax elements with

uniform probability distribution. This replaces steps 3-7 above.
2. It passes the bin along the coder state to a bypass coder.
3. It updates the arithmetic coder state.
4. It generates 0 to potentially several bits to be written to output stream.

And its use case diagram showing its main stages is as below:

Figure 7. High-level CABAC use-case

 13

4. Analysis and design of an OO CABAC
Because of previous involvement with CABAC, it wasn’t too difficult to come up

with the set of initial class candidates. Below figure was one the first thoughts.
But after a while and also considering higher level issues (e.g. interface of

CABAC within the whole reference software), the pool of class name started to
evolve significantly and the changes continued (though with slower rate) till
figuring out the detailed interaction sequence after each iteration of refinement.

Figure 8. Initial pool of CABAC’s class names

A natural decision was to completely separate entropy coding (as a whole)

from the rest of H.264 coder through a clean interface (no matter if the final
implementation of CABAC was a component or just simply a package). A weak
point in the reference software implementation was having an if-else block for
every access to CABAC/CAVLC to setup the different settings required for each
one (though through using function pointers it was attempting to use a single
function call). Using a base class for entropy coding with different generalizations
as CABAC and CAVLC was sounding like a good decision. The base class itself
was realization of an interface so implementing CABAC and CAVLC as
components was becoming easy. Then higher level portion of H.264 would use a
single interface to access entropy coding services. This interface is retrieved by
searching and loading of the right component (CABAC/CAVLC e.g. through MS
COM component enquiry APIs) based on whether the codec supports the
required profile and whether if the right component is found. Note that in a real
life codec the entropy coder is an integral part of the codec and we here assume
it as a component but the argument of a clean and working interface applies to
both component or package cases. At the end, higher level portion of the codec
seamlessly uses the interface no matter what mode of entropy coding is used on
the underlying layer (CABAC vs. CAVLC).

Figure 9 shows how CABAC and CAVLC are realizing IEntropyEncoder interface.
The rest of codec only sees this interface from these components. The main
method of this interface is EncodeElement which receives a SyntaxElement

Binarizer

Bypass coder

Context table

Binary
arithmetic coder

CABAC

Unary binarizer Truncated unary
binarizer

Exp-golomb
binarizer

Fixed-length
binarizer

 14

object. This object contains type and value of the syntax element to be entropy
coded. CABAC/CAVLC looks into type member of this object to rout it to the
proper handler. Basically EncodeElement behaves like a dispatcher. But entropy
coder component also need to know about some data (all related to Macroblock
properties) kept by codec. Though theoretically all of these data can be retrieved
and passed to the EncodeElement as a big data structure, this would shift some
knowledge of entropy coder to the caller (in codec) as not all of this data is
necessary for each syntax element. This breaks our goal of good decomposition.
A better approach tries to expose an interface from the caller (a Macroblock
object) to entropy coder component so then CABAC/CAVLC only query the data
they need at the right time so this separates the behavior in a good fashion.

IMacroblock interface only exposes the data that CABAC/CAVLC might need to
enquire about it. Note that this data access is read only so coupling is not an
issue. Also note that IMacroblock belongs to the Macroblock object and not kept
for a long time (unlike IEntropyEncoder which could be kept by codec for the
whole lifetime of codec) that entropy encoding is to be done for some of its
elements so the next Macroblock object would pass a different interface
reflecting its own identity down to EncodeElement.

The rest of classes and enumeration types are the types that used by both
layers (entropy coding layer and codec layer), e.g. SyntaxElement that is created
by codec layer and passed down to entropy coding layer (read only access).
Bitstream object is passed to entropy codec layer (through AssignBitstream) at
start of each new slice to inform the entropy coder component about the target
buffer it needs to store the generated encoded stream into, so this is the only
scenario that entropy coder has a side effect on codec layer.

 15

Figure 9. Interface of CABAC/CAVLC with rest of codec (InterfaceLayer diagram in model).

 16

Figure 10 shows both CABAC and CAVLC class diagrams. They both derive from
BaseCoder class which implements the basic functionality of the entropy coder. It
implements general administrative methods like EncodeElement and
AssignBitstream but CABAC and CAVLC overrides the rest of the methods based
on their own encoding logic. Since both CABAC and CAVLC exactly use the same
mathematical transformations (members of VLC_Binarizer) to encode the slice
header elements, implementation of EncodeSliceHeaderSubSyntax() is done in
the base class.

CABAC is significantly larger than CAVLC. It isn’t broken to separate packages
as all of its classes are pretty much related (though was tempted to do it for
Context-related classes). The reference software had integrated binarization and
context retrieval. Here, they’re separated. There was no need to provide multiple
binarizer classes as they implemented as simple transformation methods without
keeping state so ended up as methods of a single static class of
CABAC_Binarizer. Since both binary coder and bypass coder were sharing the
same sub-interval properties, it was decided to merge their classes (from the
initial pool of class candidates) as BinaryArithmeticCoder and have a method for
bypass coding.

ContextModeler turned out to be much more challenging than originally
thought (since binarization was separated from context management). Basically
its function is to retrieve the proper context entry for a bin. For most syntax
elements only knowing the index of bin (within a bin string) being encoded is
enough to make decision about the right context entry (of course based on
syntax type, …). So by calling StartElementEncoding at start of encode of a
syntax element and saving its syntax element and IMacroblock interface
temporarily till end of encode of that element (notified by calling
FinishElementEncoding) and multiple calls in between to GetContextElement with
increasing bin index, all context entries can be retrieved. But MB_TYPE and
SUB_MB_TYPE follow a different structure (based on some code trees) so the
whole tree is created right after StartElementEncoding(), its result stored
temporarily in m_CodeTree_ContextIndex and retrieved through
GetContextElement_Unstructured().

 17

Figure 10. Entropy coder class diagram (both CABAC/CAVLC) (EntropyCoder_Slim class

diagram in the model).

 18

ContextEntry class simply keeps a single entry of the context table described
before (7 bits in total) and provides method to retrieve and update its data.
ContextModeler keeps CONTEXT_TABLE_SIZE of context entries. This table is
initialized to some predefined values at start of each slice (when codec sends
StartNewSlice notification). Then the content of table needs to be filled by one of
the three predefined possible tables (selected based on model number). But
actually the table itself is not predefined but can be calculated through
predefined arrays of m_mArray and m_nArray. So to do only this calculation
once, the constructor calculates the table once and then table content is
retrieved by GetContextTable() at start of every new slice.

BinaryArithmeticEncoder class’s main methods are
EncodeSymbol_ContextAdaptive() and EncodeSymbol_BypassCoding(). One
expects a ContextEntry while the bypass mode doesn’t need one. These methods
update the subinterval and generate the output bitstream in the Bitstream buffer
provided by the codec.

Appendix A explains all the parameters need to be setup by the codec in an
instance of SyntaxElement object to be passed to EncodeElement (through
value1 to value4 members). The number of parameters varies from one to four
depending on the syntax/sub-syntax type.

Appendix B explains the macroblock data the ContextModeler looks them up
through IMacroblock interface and how it generates the context index increment
(CxtIncr) to be added to the base group index of the syntax element or the final
CxtIndex directly.

For more details on each method please refer to each method’s documentation
in EntropyCoder diagram of the Rose model. This model shows flat relationship
of entropy coder layer and codec layer (not encompassing individual
components, unlike InterfaceLayer and EntropyCoder_slim diagrams). The
classes and their methods were refined several times iteratively after test-driving
the main use-cases and figuring-out issues.

Figure 11 shows a more-detailed use-case diagram of CABAC as a whole but
from initiation point of view from codec layer (slice generator). UC2 use-case
specification shows the sequence of a sample syntax element encoding here for
a MVD (motion vector difference) type. Other syntax elements would require
slightly different specifications. And Figure 12 shows the interaction diagram of
similar element encoding for MVD.

 19

Figure 11. Detailed CABAC use-case diagram from codec viewpoint

Name: UC2) Encode of a sample syntax element use-case
Description: An example of entropy coding of a syntax element (not of slice header
type), for example of MVD type.

Precondition(s): Codec layer has prepared a SyntaxElement instance identifying the
type and value of the element to be encoded. An instance of the CABAC is already
retrieved (through retrieval of IEntropyEncoder interface) and initialized. A slice is
already started and its header already encoded.

Postconditions(s): CABAC state (sub-interval info) is updated based on its previous state
and the new syntax element encoded. Some new output bits might have been
generated and appended to the bitstream buffer.

 Basic Course of Action:

1. CABAC receives a syntax element from a variety of possible syntax element
sources within slice generator.

2. It routes it to the proper handler (e.g. EncodeMVD in this scenario). The rest of
steps actually happen within the handler.

 20

3. It binarizes the syntax element through one or combination of unary, truncated
unary, k-order exp-Golomb and fixed-length methods into bins (in this scenario
could be concatenation of a single bin, unary, 9-order exp-Golomb and few other
bins.

4. It notifies the context modeler to prepare itself for retrieval of context entries for
the new syntax element. The context modeler saves syntax element and
Macroblock callback interface temporarily.

5. Now for each bin that needs a corresponding context entry, it queries context
modeler to receive the proper context entry.

6. For the context-dependent bins, it encodes the bin by passing the bin and the
context to arithmetic encoder.

7. It updates the context modeler’s context entry by passing it the updated context
entry returned through arithmetic encoder.

8. For the context-independent bins, it uses bypass coding instead.
9. It notifies the context modeler that encode of current syntax element is finished

so it can releases its copy of Macroblock interface.
10. At the end of this process, sub-interval state of arithmetic coder is updated and 0

to potentially several bits are generated to be written to output stream.

 Alternative course A: For syntax elements of type MB_TYPE and SUB_MB_TYPE,

a code-tree is used for context entry retrieval. This replaces above the step 5 with:
5. It updates the arithmetic coder state. Now for each bin that needs a

corresponding context entry, it queries context modeler to receive the context
entry. The code tree was already prepared and stored in response to earlier
preparation for context retrieval.

Figure 13 shows sequence diagram for CABAC first time initialization, and also

later initialization/notification sequence at every start of new slice.
Figure 14 to 16 show state-chart diagrams for CABAC, ContextModeler and

BinaryArithmeticEncoder classes respectively. And Figure 17 shows the use-case
activity diagram for EncodeElement sequence already discussed.

 21

Figure 12. Sequence diagram of a sample syntax element coding for MVD element

(SyntaxEncoding diagram in model).

 22

Figure 13. Sequence diagram of CABAC’s first-time and later slice-time initializations

(CABAC_Initialization diagram in model).

Figure 14. CABAC’s state-chart diagram (CABAC state machine in model).

 23

Figure 15. ContextModeler’s state-chart diagram (ContextModeler state machine in model).

Figure 16. BinaryArithmeticEncoder’s state-chart diagram (BinaryArithmeticCoder state
machine in model).

 24

Figure 17. A generic EncodeElement use-case activity diagram (EncodeElement activity
diagram in model).

 25

5. Higher-level H.264 model
This portion only tries to decipher some portions of the higher-level codes of

the H.264 codec get involved before entropy coding. As suggested before, the
focus is at the slice layer and below so we ignore higher level administrative
portion like encoding parameter parsing and setup, decision of slice type, … This
is not an attempt to introduce a full-featured design but first to understand and
analyze portions of the code which till now was considered horrifying for the
author and at the same time trying to suggest some level of organization
(classes/packages) to encapsulate that code. Needless to say, this reverse-
engineering of the code was accompanied by lots of debugging and comparing
the code against the standard and other books in the area.

Below use-cases UC3 & UC5 describe the use-case specification of encoding an
intra/inter slice respectively. These use-cases are the main use-cases of the
codec that derive the majority of codec operations. Because of their complexity,
a layering of use-cases needs to be done, e.g. including UC4 (RD cost calculation
for a macroblock) in UC3. Similar thing needs to be done for most of the steps of
UC3 and UC5 steps.

Figure 18 shows the high-level layering of classes, packages and components
in the codec scenario. For a full description of the main class diagrams of the
codec (excluding entropy coder) refer to Slice class diagram of the model. It was
too big to include here. And most of the time was spent to derive this class
diagram.

Figure 19 shows a high-level sequence diagram for encoding a new slice
without going to all the huge details and interactions. While Figure 20 shows the
activity diagram for RD_Cost_For_Macroblock method of the Rate Distortion
Manager class.

Name: UC3) Encoding a new intra (I) slice
Description: Encode of a new intra slice (e.g. a frame). [It’s mainly what happens
through encode_one_slice()]

Precondition(s): Codec is in a valid state (i.e. previous frames encoded properly). And a
new uncompressed frame is provided to the codec.

Postconditions(s): The frame is encoded according to the standard spec (i.e. its
generated bitstream is compliant with the spec.)

 Basic Course of Action:

1. It initializes the slice state including reset of the basic slice data, allocation of
required memory, reset of the reference picture lists,…

 26

2. It writes the slice header to the output bitstream buffer and adds the extra bits
to make it byte-aligned. Also notifies the entropy encoder that header is written.

3. Now it applies all steps 4-8 below for every single macroblock of the current
frame in the scanning order (from top-left corner to bottom-right corner). [done
through calling encode_one_macroblock]

4. It calculates all possible chroma prediction modes (DC, horizontal, vertical and
plane) for both U and V components and stores their result temporarily.

5. It picks one of the above chroma prediction modes and tries both possible luma
prediction modes (Intra16x16, Intra4x4) by repeating the 2 steps below.

6. It calculates the RD cost of picking this luma/chroma mode setting through use-
case UC4. [equiv. to RD_cost_for_macroblock() in code]

7. If the resulted cost is the minimum cost so far, the setting and resulted
predictions/residuals are saved temporarily. Goes back to step 5 once to try the
other luma prediction mode.

8. Now that the best choice of setting is found, entropy encodes the result and
writes the result to the bitstream. Goes back to step 3 for the next macroblock.

9. Now that all macroblocks of the slice are encoded, it terminates the slice.
10. The final bitstream is NAL processed and flushed to the output file.

Name: UC4) Calculating cost of encode of a macroblock using a selected luma/chroma
mode
Description: This use-case calculates the cost (considering both distortion and entropy-
coded rate) of encoding a macroblock using a particular pair of luma/chroma prediction
mode. [equivalent to RD_Cost_for_macroblock()]

Precondition(s): Codec is in a valid state. All chroma prediction modes are already
calculated and stored temporarily.

Postconditions(s): The state of encoder is not changed (really changed e.g. for entropy
coder but restored to the original state after end of the use-case).

 Basic Course of Action:

1. For all possible prediction modes of the above luma intra mode (DC, Hor, Vert,
Plane for I16x16; all 9 modes for I4x4), DCT transformation of the modes
calculated and only the one with the least SAD selected.

2. It also calculates the DCT transformation of the residual resulted from the
selected chroma mode.

3. It calculates the quality distortion of both luma and chroma components (loss).
4. It calculates the bit count needed if with he above luma/chroma prediction

modes the whole macroblock was entropy coded.
5. It assigns a cost value to this selected luma/chroma settings based on calculated

distortion/rate and using a cost formula.

 27

Name: UC5) Encoding a new inter (P/B) slice
Description: Encode of a new inter slice (e.g. a frame). [It’s mainly what happens
through encode_one_slice()]

Precondition(s): Codec is in a valid state (i.e. previous frames encoded properly). And a
new uncompressed frame is provided to the codec for inter coding.

Postconditions(s): The frame is encoded according to the standard spec (i.e. its
generated bitstream is compliant with the spec.)

 Basic Course of Action:

1. It initializes the slice state including reset of the basic slice data, allocation of
required memory, reset of the reference picture lists,…

2. It writes the slice header to the output bitstream buffer and adds the extra bits
to make it byte-aligned. Also notifies the entropy encoder that header is written.

3. Now it applies all steps 4-8 below for every single macroblock of the current
frame in the scanning order (from top-left corner to bottom-right corner). [done
through calling encode_one_macroblock]

4. For all the three cases of non-8x8 motion search modes (namely 16x16, 8x16,
16x8), it repeats steps 5-6.

5. It motion estimates the block using the selected mode.
6. If there are multiple reference frames possible (depending on forward/backward

lists), the best one is selected.
7. It calculates the cost of blocks motion estimated (one block for 16x16 case and

two blocks for each of 8x16 and 6x18 cases) and store it.
8. Now the focus goes to the case of four 8x8-blocks. For each 8x8 block steps 9-

13 is repeated.
9. It picks one of the 4 possible (5 for B slice), sub-partition modes (8x8, 8x4, 4x8,

4x4) and repeats step x-y below.
10. It Motion estimates the block using the sub-partition mode selected.
11. If there are multiple reference frames possible (depending on forward/backward

lists), the best one is selected.
12. It calculates the cost of encoding that 8x8 block using the selected sub-partition

mode.
13. It selects the best sub-partition mode resulting in the least cost for that block. It

goes back to step 10 to repeats this for the other block.
14. By adding up the cost of each 8x8 block (each using the best sub-partition

mode), now the best cost for the four possible block partitioning is known
(16x16, 16x8, 8x16, 8x8) so the best one is chosen.

15. Similar to steps 4-8 of the Intra use-case, now the macroblock is intra-coded
and the best possible mode for luma/chroma is selected.

16. When reaching this point, the best possible mode from all inter/intra cases is
selected.

17. Now that the best choice of setting is found, it entropy encodes the result and
writes the result to the bitstream. Goes back to step 3 for the next macroblock.

18. Now that all macroblocks of the slice are encoded, it terminates the slice.
19. The final bitstream is NAL processed and flushed to the output file.

 28

Figure 18. High-level relationship of class/package/components of the whole codec (Codec

diagram in model).

 29

Figure 19. A brief sequence diagram for “Encoding a new Intra slice” use-case
(EncodeOneSlice sequence diagram in model).

 30

Figure 20. RD_Cost_For_Macroblock operation activity diagram; part of Rate Distortion
Controller class (RD_CostForMB diagram in model).

 31

6. Conclusion
Outstanding issues:

The CABAC/CAVLC components analysis and design are pretty much done and
no more holes are found. Several iterations of test-driving use-cases/sequence
diagrams and update of classes and interfaces really helped to identify the holes
and refine the design.

But same thing can’t be said about the higher-level H.264 codec as it was
originally predicted. Though some designs are produced, the analysis portion is
not finished and there exists holes in this preliminary design (e.g. coupling
between packages, …). Lots of time was spent on analysis of the existing code
and figuring out the relationship between different entities but still some portion
(though minor) of the code is untouched. The derived class diagrams shed some
light on the relationship between classes, packages and generally how the
layering of the codec can be done. Especially the IMacroblock interface cleanly
isolates the access from entropy coder to higher-level codec functionalities.

There are still many other use-cases and sequence diagrams to be tested to
help refine the classes and come with a complete design. At the same time, task
of deciphering most of the daunting portions of the code is done. Another
observation is that the Macroblock class has grown too much and should be
broken to multiple classes. Most of the class methods are the counterparts of
existing functions in the original code that are grouped under different classes.
Some of these functions even go above 1000 lines (e.g.
encode_one_macroblock) which need to be broken done.

Deployment
The deployment of the system is straight-forward as there is only a single node

where the H.264 encoder is running on and CABAC though is a separate
component (of course a registration and enquiry mechanism is required like
Microsoft’s COM), it is an in-process component (e.g. running as a DLL within the
encoder’s process). Because of the large amount of data to be shared and low-
degree of parallelism, a distributed system is not an option at this point though it
is the focus of some existing research. But there have been successful attempts
to use SMP (shared-memory multiprocessor) systems for H.264 encoding. But
only limited portion of the code is parallelizable. For example, CABAC has
completely a serial nature but rate-distortion cost calculation (to pick the best
possible encoding modes from a pool of possible choices) or motion-estimation
(to find a matching macroblock in other frames) can be parallelized.

Note that inter-process communication is too costly for the encoder scenario so
even in the parallel form multithreading will be used. The current implementation
of reference software codec does not support multithreading as it is not geared
for performance and subsequently we have not considered here. Though CABAC

 32

is hardly parallelizable, in the concept of parallel rate-distortion calculation,
speculative entropy-encoding is an option. In this scenario several instance of
CABAC component could be running in multiple threads each following a
separate speculative path of rate-distortion algorithm. As CABAC is not using any
global variables, having multiple instances each running in different thread is not
an issue, but calling a single instance from multiple threads is an illegal action as
it is against the serial nature of CABAC and can’t gain anything. Though currently
not enforced, a simple lock at the BaseCoder can safe-guard against this illegal
action (since the whole CABAC is accessed through IEntropyEncoder interface,
there are only few methods to be modified for grabbing/releasing the lock).

Summary:
This project was an interesting experience to practice most of the OO

analysis/design topics learned in class. This topic didn’t have a clean metaphor to
compare against as it was mainly of engineering/mathematical nature. The main
interaction between different layers resembled client/server behavior though
some elements were client of one layer while serving another layer.

Also, the importance of creating a good documentation especially a UML model
of any software (especially large ones) couldn’t be emphasized more as if this
was the case for H.264 reference software, this project probably wouldn’t exist at
all!

References:

 [Quatrani`03] Terry Quatrani, “Visual Modeling with Rational Rose 2002
and UML”, Addison Weseley Professional, 2003.

 [ITU`03] ITU, “ITU-T Recommendation H.264: Advanced video coding for
generic audiovisual services”, 05/2003.

 [Marpe`03] D. Marpe, H. Schwarz, and T. Wiegend, “Context-Based
Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression
Standard” in IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 7, July 2004.

 [Richardson`03] Iain Richardson, “H.264 and MPEG-4 Video Compression:
Video Coding for Next Generation Multimedia”, John Wiley & Sons, 2003.

 33

 Appendix A: SyntaxElement parameters EncodeElement() expects to receive
for each syntax type/sub-type. Also showing dependency of the handler on
other data (to be provided through IMacroblock).

 value1 value2 Value3/4 Dependences
MB_TYPE: MBType2Value(currM

B->mb_type)
 Availability and mb_type of

up/left neighboring MBs;
Slice_type (I/B/rest);
1-13 bins;

MB_SKIP_FLAG: MBType2Value(currM
B->mb_type)

currMB->cbp Availability and skip_flag of
up/left neighboring MBs;
Slice_type (B/non-B);
Cbp; MB type;
1 bin only;

SUB_MB_TYPE: B8Mode2Value
(mode, pdir) [mode:
partitioning mode,
pdir: prediction
direction]

 Slice_type (B/non-B);
1-5 bins;

MVD: Includes
MVD_HORIZ, MVD_VERT context
entries

curr_mvd 2*k+list_idx
[identifies
component/
direction]

subblock
_x/y

Availability, mb_field of
MBs containing
neighboring sub-
macroblocks;
MVD and position of
neighboring sub-
macroblocks;
Slice field/frame;
1 bin + UEGK(3) of value1-
1 + bypass coding of sign

REF_PIC_INDEX: ReferenceFrame (fwd_flag)?
LIST_0:
LIST_1

subblock
_x/y

Availability, mb_field, sub-
block mode of MBs
containing neighboring
sub-macroblocks;
Position of neighboring
sub-macroblocks;
Slice_type (B/non-B);
Slice field/frame;
1 bin + unary coding of
value1-1;

DELTA_QUANT_PARAM: currMB->delta_qp Last_dquant;
1 bin + unary coding of
value1-1;

INTRA_CHROMA_PRED_MODE: currMB-
>c_ipred_mode

 Availability and
c_ipred_mode of up/left
neighboring MBs;
1 bin + TU(2) coding of
value1-1;

INTRA_PRED_MODE: Includes
PREV_INTRA_PRED_MODE_FLAG,
REM_INTRA_PRED_MODE context
entries

(mostProbableMode
== ipmode)

Ipmode 1-4 bins;

MB_FIELD_CODING_FLAG: currMB->mb_field Availability and mb_field of
A/B neighboring MBs;

 34

1 bin only;
CODED_BLOCK_PATTERN:
CBPLuma = cbp % 16
CBPChroma = cbp / 16

currMB->cbp CBP_INTRA/
CBP_INTER

 Availability, mb_type and
cbp of upper/left MBs;

When cbp is present, CBPLuma specifies, for each of the
four 8x8 luma blocks of MB, one of cases:
- All transform coeff levels of four 4x4 luma blocks in the
8x8 luma block are equal to zero
- One/more transform coeff levels of one/more of the 4x4
luma blocks in 8x8 luma block is non-0.
The meaning of CBPChroma is:
0 All chroma transform coeff levels are equal to 0.
1 One/more chroma DC transform coeff levels is non-0.
All chroma AC transform coeff levels equal 0.
2 Zero/more chroma DC transform coeff levels is non-0.
One/more chroma AC transform coeff levels are non-0.

 availability, mb_type,
position and cbp of MB
containing left neighboring
sub-macroblock;
Position of neighboring
sub-macroblocks;
Slice_type (B/non-B);
Slice field/frame;
4 bins: 1 bin per each 4
luma blocks of cbp;
1 bin showing
(chromaCbp !=0)
If true:
1 bin showing
(chromaCbp ==2);

CODED_COEFF_BLOCK:
Includes:
CODED_BLOCK_FLAG,
SIGNIFICANT_COEFF_FLAG,
LAST_SIGNIFICANT_COEFF_FLAG
COEFF_LEVEL

Level Run subblock
_x/y;
block_ty
pe;
field/fra
me

Availability, mb_type and
position of MB containing
upper/left neighboring sub-
macroblocks;
1 bin for cbp_flag;

- Depending on MbPartPredMode(mb_type, 0), the
following applies.
 - If MbPartPredMode(mb_type, 0) is equal to
Intra_16x16, the transform coefficient levels are parsed
into the list Intra16x16DCLevel and into the 16 lists
Intra16x16ACLevel[i]. Intra16x16DCLevel contains the
16 transform coefficient levels of the DC transform
coefficient levels for each 4x4 luma block. For each of the
16 4x4 luma blocks indexed by i = 0..15, the 15 AC
transform coefficients levels of the i-th block are parsed
into the i-th list Intra16x16ACLevel[i].
 - Otherwise (MbPartPredMode(mb_type, 0) is not
equal to Intra_16x16), for each of the 16 4x4 luma blocks
indexed by i = 0..15, the 16 transform coefficient levels
of the i-th block are parsed into the i-th list LumaLevel[i].
- For each chroma component, indexed by iCbCr=0..1, 4
DC transform coefficient levels of the 4x4 chroma blocks
are parsed into iCbCr-th list ChromaDCLevel[iCbCr].
- For each of the 4x4 chroma blocks, indexed by i4x4 =
0..3, of each chroma component, indexed by iCbCr =
0..1, the 15 AC transform coefficient levels are parsed
into the i4x4-th list of the iCbCr-th chroma component
ChromaACLevel[iCbCr][i4x4].
See page 46 of standard spec

 For each coefficient, 1 bin
to show significance of
coefficient followed by
another 1 bin to reflect last
significant bit status;
For each significant
coefficient traversed from
end of the block:

- 1 bin to show if it’s
absolute value is
equal to 1

- UExpG(14) coding
of absolute value
of coefficient-1

- 1 bin for sign of
coefficient using
bypass coding

END_OF_SLICE_FLAG: EndOfSlice 1 bin showing end of slice
status (using context index
276)

 35

SLICE_HEADER:
 Sub-type value1 value2 Coding

FIRST_MB_IN_SLICE: CurrrentMB_number MbaffFrameFlag ue(v)
SLICE_TYPE: SliceType ue(v)
PIC_PARAM_SET_ID: PicParamSet ue(v)
FRAME_NUM: CurrentSliceNumber u(v)
FIELD_PIC_FLAG: FieldPicFlag u(v)
BOTTOM_FIELD_FLAG: BottomFieldFlag u(v)
IDR_PIC_ID: IdrFlag ue(v)
PIC_ORDER_CNT_LSB: PicOrderCntLsb u(v)
DELTA_PIC_ORDER_CNT_BOTTOM: DeltaPicOrderCntBotom se(v)
DELTA_PIC_ORDER_CNT_0: DeltaPicOrderCnt0 se(v)
DELTA_PIC_ORDER_CNT_1: DeltaPicOrderCnt1 se(v)
REDUNDANT_PIC_CNT: RedundantPicCnt ue(v)
DIRECT_SPECIAL_MV_PRED_FLAG: DirectFlag u(v)
NUM_REF_IDX_ACTIVE_OVERRIDE_FLAG: OverrideFlag u(v)
NUM_REF_IDX_10_ACTIVE_MINUS1: NumRefIdx01Active_1 ue(v)
NUM_REF_IDX_11_ACTIVE_MINUS1: NumRefIdx11Active_1 ue(v)
CABAC_INIT_IDC: CabacInitIdc (aka

ModelNumber)
 ue(v)

SLICE_QP_DELTA: SliceQpDelata se(v)
SP_FOR_SWITCH_FLAG: SpForSwitchFlag u(v)
SLICE_QS_DELTA: SliceQsDelata ue(v)
DISABLE_DEBLOCKING_FILTER_IDC: DisableDeblockFilterIdc

(aka LoopFilterDisIDC)
 ue(v)

SLICE_ALPHA_C0_OFFSET_DIV2: LoopFilterAlphaOffset se(v)
SLICE_BETA_OFFSET_DIV2: LoopFilterBetaOffset se(v)
SLICE_GROUP_CHANGE_CYCLE: SliceGroupChangeCycle u(v)
REF_PIC_LIST_REORDERING_FLAG_10: RefPicListReordFlag10 u(v)
REF_PIC_LIST_REORDERING_FLAG_11: RefPicListReordFlag11 u(v)
REORDERING_OF_PIC_NUMS_IDC: RemapOfPicNumsIdc ue(v)
ABS_DIFF_PIC_NUM_MINUS1: AbsDiffPicNum10/11-1 ue(v)
LONG_TERM_PIC_IDX_L0_1 LongTermPicIsxL01 ue(v)
LUMA_LOG2_WEIGHT_DENOM: LumaLogWeightDenom ue(v)
CHROMA_LOG2_WEIGHT_DENOM: ChroLogWeightDenom ue(v)
LUMA_WEIGHT_10_FLAG: LumaWeightFlag10 u(v)
LUMA_WEIGHT_11_FLAG: LumaWeightFlag11 u(v)
LUMA_WEIGHT_10_11: LumaWeight se(v)
LUMA_OFFSET_10_11: LumaOffset se(v)
CHROMA_WEIGHT_10_FLAG: ChromaWeightFlag10 u(v)
CHROMA_WEIGHT_11_FLAG: ChromaWeightFlag10 u(v)
CHROMA_WEIGHT_10_11: ChromaWeight se(v)
CHROMA_OFFSET_10_11: ChromaOffset se(v)
NO_OUTPUT_OF_PRIOR_PICS_FLAG: NoOutOfPriorPicsFlag u(v)
LONG_TERM_REFERENCE_FLAG: LongTermRefFlag u(v)
ADAPTIVE_REF_PIC_MARKING_MODE_FLAG: AdaptiveRefPicBufering u(v)
MEMORY_MGMENT_CONTROL_OPERATION: MemMgmtControlOp ue(v)
DIFFERENCE_OF_PIC_NUMS_MINUS1: DifferenceOfPicNums-1 ue(v)
LONG_TERM_PIC_NUM: LongTermPicIdx10/11 ue(v)
LONG_TERM_FRAME_IDX: LongTermFrameIndex ue(v)
MAX_LONG_TERM_FRAME_IDX_PLUS1: MaxLongTermFrameIdx ue(v)

 36

Appendix B: Retrieval of a context entry from ContextModeler depending on
syntax type/sub-type. Also showing dependency of the handler on other data
(to be provided through IMacroblock).

 Dependencies (IMacroblock
interface)

ContextIndex/ContextIncrement (relative
to group base)

MB_TYPE: Availability & mb_type of
up/left neighboring MBs;
Slice_type (I/B/rest);

1-13 bins; 3 unstructured code trees;
Integrated bin coding/context modeling;
Multiple calls to
GetContextElement_Unstructured return
both bin and context.

MB_SKIP_FLAG: Availability & skip_flag of
up/left neighboring MBs;
Slice_type (B/non-B); MB-
type; Cbp;

1 bin only, not BinIdx dependent;
CxtIncr = { 0, 1, 2} or {7, 8, 9}

SUB_MB_TYPE: Slice_type (B/non-B);

1-5 bins; 2 unstructured code trees;
Integrated bin coding/context modeling;
Multiple calls to
GetContextElement_Unstructured return
both bin and context.

MVD: Includes
MVD_HORIZ, MVD_VERT context
entries

Availability, mb_field of MBs
containing neighboring sub-
macroblocks;
MVD and position of neighbor
sub-macroblocks;
Slice field/frame;

1 bin + UEGK(3) of value1-1 + bypass
coding of sign
CxtIncr = { 0, 1, 2, 3, 4, 5, 6 }

REF_PIC_INDEX: Availability, mb_field, sub-
block mode of MBs containing
neighbor sub-MBs
Position of neighbor sub-MB;
Slice_type (B/non-B); Slice
field/frame;

Generates 1 or more bins (dep. on unary
coding);
bin 1 and 2: CxtIncr = { 0, 1, 2, 3}
other bins: CxtIncr = { 4, 5}

DELTA_QUANT_PARAM: Last_dquant;

1 bin + unary coding of value1-1;
Generates 1 or more bins (dep. on unary
coding);
bin 1 and 2: CxtIncr = { 0, 1}
other bins: CxtIncr = { 2, 3}

INTRA_CHROMA_PRED_MODE: Availability and c_ipred_mode
of up/left neighboring MBs;

Generates 1–more bins (dep. on TU(2)
coding);
bin 1: CxtIncr = { 0, 1, 2 }
other bins: CxtIncr = { 3 }

INTRA_PRED_MODE: Includes
PREV_INTRA_PRED_MODE_FLAG,
REM_INTRA_PRED_MODE context
entries

 1-4 bins;
bin 1 : CxtIncr = 0
bins 2-4: CxtIncr = 1

MB_FIELD_CODING_FLAG: Availability and mb_field of
A/B neighboring MBs;

1 bin only, not BinIdx dependent;
CxtIncr = { 0, 1, 2}

CODED_BLOCK_PATTERN:
CBPLuma = cbp % 16
CBPChroma = cbp / 16

Availability, mb_type and cbp
of upper/left MBs;
Availability, mb_type, position
and cbp of MB containing left

4 bins: 1 bin per each 4 luma blocks of
cbp;
1 bin showing (chromaCbp !=0)
If true, 1 bin showing (chromaCbp ==2);

 37

neighboring sub-macroblock;
Position of neighboring sub-
macroblocks;
Slice_type (B/non-B);
Slice field/frame;

5-6 bins;
bins 1-4: CxtIncr = { 0, 1, 2, 3}
bins 5: CxtIncr = { 4, 5, 6, 7}
bins 6: CxtIncr = { 8, 9, 10, 11}

CODED_COEFF_BLOCK:
Includes:
CODED_BLOCK_FLAG,
SIGNIFICANT_COEFF_FLAG,
LAST_SIGNIFICANT_COEFF_FLAG
COEFF_LEVEL

Availability, mb_type and
position of MB containing
upper/left neighboring sub-
macroblocks;

1) cbp_flag (1 bin)
 - Its CxtIncr = [0, 19] (20 possible: 5
category, 4 context possible for each)
2) significance bit & last significant bit (for
each coefficient); 61 contexts in total=
15+14+15+3+14 contexts for categories
0-4 and based on BinIndex:
 - for significance bin: CxtIncr = [0, 60]
 - for last significance bin: CxtIncr = [0,
60]
3) coeff levels (traversed from end of the
block); 49 contexts in total (5 for 1st bin,4
for every next bin)
 - 1st bin to show if abs value is equal to 1
 CxtIncr = [0,4]
 - for next bins: CxtIncr = [5, 49]; 4 bins
for each binIndex of UExpG(14) coding of
absolute value of coefficient-1
 - 1 bin for sign of coefficient using bypass
coding (no context needed)

END_OF_SLICE_FLAG: EndOfSlice CxtIndex = 276
SLICE_HEADER:
 And its subtypes:

Using BaseCoder coding; not using CABAC
context-modeller

